Selenite, selenized yeast, or conjugated linoleic acid isomers supplemented to the diet influence the fatty acid profile in the spleen and blood plasma of rats^{*}

M. Czauderna¹, J. Kowalczyk¹, K.A. Krajewska¹ and L'. Leng²

¹The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences 05-110 Jablonna, Poland ²Institute of Animal Physiology, Slovak Academy of Sciences 040 01 Košice, Slovak Republic

(Received 2 November 2010; accepted 26 November 2010)

ABSTRACT

The effect of dietary conjugated linoleic acid (CLA) isomers (CLAmix), Na,SeO₃ (SeIV) or selenized yeast (SeY) on spleen weight, contents of CLA isomers and other fatty acids (FA), and efficiency of fatty acid desaturation in the spleen and blood plasma of rats were investigated. The study was performed on 80 female Wistar rats, 8 weeks of age with an initial body weight of 195.4±0.8 g. Each group numbered 8 rats. For 6 weeks the rats were fed *ad libitum* the Labofeed H diet supplemented with 1.5% CLAmix, 0.2 ppm Se as sodium selenite (SeIV), selenized yeast (LSeY), or 0.5 ppm Se as SeIV (HSeIV) or SeY (HSeY). The addition of CLAmix to the diet with SeIV or SeIV increased the weight of the spleen in comparison with rats fed the diet with SeIV or the control group. The diets enriched in CLAmix, "SeY, or the diet with CLAmix and SeY (as SeY or "SeY) decreased spleen weight. The diet containing CLAmix, with or without Se, as SeIV or SeY, reduced the sum of fatty acids (Σ FA) in the spleen, while increasing it in the plasma. The diet with CLAmix and "SeY most efficiently increased the content of CLA isomers, especially c9t11CLA, in the spleen and plasma. C9t11CLA in the spleen was metabolized more efficiently than t10c12CLA, while in plasma t10c12CLA was metabolized faster than c9t11CLA. The diet containing CLAmix with or without SeIV or SeY, significantly decreased the contents of c9C18:1, c11C18:1, and sums of saturated fatty acids (SFA), mono-(MUFA) and polyunsaturated fatty acids (PUFA) in the spleen, whereas the diet containing CLAmix and/or "SeY increased the concentrations of these fatty acids in plasma. The diet enriched in CLAmix or "SeY decreased the ratios of PUFA/SFA, MUFA/SFA and PUFA/2FA in the spleen and plasma. The addition of SeIV or SeY to the diet with CLAmix usually slightly decreased these ratios in the spleen and plasma in comparison with the diet

^{*} Supported in part by the Ministry for Science and Information, Grant No. N N311 3364 33

³ Corresponding author: e-mail: mhye@yzu.edu.cn

containing CLAmix. Our results indicate that the diet with CLAmix more significantly stimulated the metabolism of PUFA and MUFA in the spleen than of SFA. The addition of SeIV or SeY to the diet with CLAmix increased the metabolic efficiency of PUFA and MUFA in the spleen.

KEY WORDS: selenized yeast, selenite, CLA isomers, fatty acids, spleen, blood plasma, rats

INTRODUCTION

The spleen is an important internal organ found in practically all vertebrate animals and plays a crucial role in regard to red blood cells as well as the immune system (Gilmore, 2006; Perkins, 2007). It removes old red blood cells, holds a reserve of blood in case of haemorrhagic shock, and also recycles iron. This organ synthesizes antibodies in its white pulp and removes antibody-coated bacteria along with antibody-coated blood cells by way of blood and lymph node circulation. Additionally, the spleen also clears bacteria and is important for proper immune function, especially in fighting bacteria. Other important functions of the spleen include erythropoiesis, storage of red blood cells and other formed elements, as well as production of opsonins, properdin, and tuftsin (Brender et al., 2005; Harold, 2010). Interestingly, the cells that consumption larger amounts of Se are immune cells, erythrocytes and platelets (Yusuf et al., 2002; Navarro-Alarcon and Cabrera-Vique, 2008; Slavik et al., 2008). Moreover, Se is needed for the proper functioning of the immune system. On the other hand, a low Se concentration in food is associated with a decrease in immune efficiency as well as poor growth and impairment of animal production (Navarro-Alarcon and Cabrera-Vigue, 2008). Animal investigations have also documented that isomer mixtures of conjugated linoleic acid (CLA) as well as individual *cis9trans11*CLA (*c9t11*CLA) and trans10cis12CLA (t10c12CLA) isomers might have a beneficial influence on the immune system (Jørgensen et al., 2010) and possess antiproliferative, antitumour, antiinflammatory and antiatherogenic properties (De La Tore et al., 2006; Naumann et al., 2006).

Solid evidence based on epidemiological studies conducted in the last 50 years shows positive relationships between Se and CLA isomer dietary intake and the effectiveness of immune functions in living organisms (Yu et al., 2002, 2008; Park and Pariza, 2007; Navarro-Alarcon and Cabrera-Vique, 2008). In addition, recent investigations have shown that dietary supplementation with CLA isomers and various Se-sources affected the concentration of fatty acids in the spleen, blood, and other tissues in examined animals (Czauderna et al., 2007a, 2009, 2010a,b; Jørgensen et al., 2010). Importantly, long-chain polyunsaturated fatty acids (LPUFA), especially n-3LPUFA, showed a positive influence on the immune

CZAUDERNA M. ET AL.

system in living organisms. Changes in the concentration of these fatty acids in animal tissues depended on the chemical forms of Se and/or CLA isomers in a diet (Yu et al., 2008).

Considering the above, we hypothesized that addition of Se (as selenite or organic Se) and CLA isomers to a rat diet affected the level of LPUFA in the spleen and blood of rats. Therefore, the aim of the current study was to investigate the influence of a diet enriched in CLA isomer mixture (CLAmix) and different doses of sodium selenite (SeIV) or selenized yeast (SeY) on the fatty acid profiles in the spleen and blood plasma of rats. Selenized yeast has been shown to be a highly bioavailable source of Se (Rayman, 2004).

MATERIAL AND METHODS

Animals, housing, diets, sampling and analytical methods

Ten groups of female rats (Wistar, Hsd Brl Han: WIST), 8 weeks of age with an initial body weight of 195.4±0.8 g were housed individually in plastic cages and fed the control and experimental diets as described in detail in our previous publication (Czauderna et al., 2010a). The rats were housed and handled in accordance with protocols approved by the Local Animal Care and Use Committee (the Agricultural University of Warsaw, Poland). Briefly, after a 7-day preliminary period, for 6 weeks the rats were fed *ad libitum* the standard Labofeed H diet (Czauderna et al., 2009) supplemented with 1.5% CLA mix (Czauderna et al., 2010a), 0.2 ppm Se as sodium selenite (LSeIV) or selenized yeast (LSeY) or 0.5 ppm Se as SeIV (HSeIV) or SeY (HSeY). SeIV, SeY and/or CLAmix mixed with a finely powdered standard Labofeed H diet. The rats were killed at the end of the six-week experiment. Spleens were removed, weighed, and frozen, blood samples were collected and processed as described in our previous publication (Niedźwiedzka et al., 2007).

Lipids in spleen (~25 mg) and blood plasma (100 μ l) samples were saponified (Czauderna et al., 2009) followed by gentle base- and acid-catalysed methylations of free fatty acids (Czauderna et al., 2007b). Tissue fatty acids were quantified as methyl esters using capillary gas chromatography with a quadrupole mass selective detector as previously described (Czauderna et al., 2010a).

Chemicals, chromatographic equipment and statistical analysis

All of the fatty acid standards and reagents, saponification (Czauderna at al., 2009) and methylation (Czauderna et al., 2007b) methods, as well as chromatographic equipment were as previously described (Czauderna et al., 2010a).

SE AND CLA AFFECCT FA IN RAT SPLEEN AND PLASMA

Results are presented as means of individually analysed samples of fresh spleen and blood plasma. Statistical analyses of the effects of dietary CLA isomer mixture and selenite or selenized yeast (i.e. SeIV or SeY) on the concentration of fatty acids and enzyme indexes were conducted using the non-parametric Mann-Whitney U test for comparing independent experimental groups. Statistical analyses of the interaction between CLAmix and Se (as SeIV or SeY) were performed using twofactorial ANOVA. For statistical analyses the program Statistica ver. 6 (Statistica by StatSoft, 2002) was used.

RESULTS AND DISCUSSION

The effect the experimental diets on the concentration of CLA isomers in the spleen and blood plasma of rats. In the current study, no macroscopic lesions or pathological changes were found in the spleen or any of the other organs of rats fed diets enriched in the CLAmix and/or Se (as $_{\rm L}$ SeY, $_{\rm H}$ SeY, $_{\rm L}$ SeIV or $_{\rm H}$ SeIV). As can be seen from the results (Table 1), the addition of CLAmix to the diet enriched in SeIV, irrespective of the concentration of extra SeIV, increased the weight of the spleen in comparison with rats fed the diet containing only SeIV or with the control group. On the other hand, the diets enriched in CLAmix or $_{\rm H}$ SeY, or the diet containing CLAmix and SeY (as $_{\rm L}$ SeY or $_{\rm H}$ SeY), decreased spleen weight. In comparison with the control diets, the other experimental diets showed a small and inconsistent influence on the spleen weight.

Supplementing CLAmix to the diet reduced the total concentration of all assayed fatty acids (Σ FA) in the spleen compared with the control (Table 1). Moreover, the addition of SeIV or SeY to the diet enriched in CLAmix enhanced reduction of the concentration of Σ FA in the spleen. The addition of _HSeY to the diet also tended to reduce the concentration of Σ FA. Similarly, the addition of selenate to the rat diet decreased the concentration of Σ FA in the spleen (Niedźwiedzka et al., 2006). On the other hand, the higher dietary SeIV content stimulated the accumulation of Σ FA in the spleen.

In plasma, the addition of 1.5% CLAmix to the diet stimulated the accumulation of Σ FA, which is in agreement with that of Niedźwiedzka et al. (2006) who reported that diets enriched in 1% or 2% CLAmix also increased the concentration of Σ FA in plasma. Moreover, as can be seen from the present study, the addition of _HSeY to the diet, regardless of the presence of CLAmix, stimulated the accumulation of Σ FA in plasma (Table 1).

The addition of CLAmix to the diet significantly increased (P<0.01) the concentration of c9t11CLA and t10c12CLA in the spleen and blood plasma of

ole 1. Dietary effects of 1.5% CLA ¹ isomer mixture (CLAmix) and selenite (SeIV) or selenized yeast (SeY) on fresh spleen masses and the	Λ tration of CLA isomers, the sum of all assayed fatty acids (Σ FA) and values of the ratio of UFA/ Σ FA in the spleen and blood plasma of rats	weeks feedino with exnerimental diers ²
---	--	--

allel 0 WC		n experim												
					Spleen	an a					Blood plasma	asma		
Group	Additives	Spieen mass ³	<i>c9t11</i> CLA	t10c12 CLA	<i>c11t13</i> 2CLA CLA isomer:	ΣCLA isomers	ΣFA	UFA	<i>c9t11</i> CLA	t10c12 CLA	clltl3 2CLA CLA isomer	ΣCLA isomers	ΣFA	UFA
		mg	µg/g	µg/g	µg/g	µg/g	mg/g	2FA	µg/g	µg/g	µg/g	µg/g	µg∕g	2FA
Control ⁴	ı	495	- 5	ı	ı	ı	$44.7^{a\alpha\beta}$	0.69^{Aa}	I	ı	ı	-	$461^{a\alpha}$	0.57
$_{\rm L}$ SeIV	0.2 ppm SeIV	481^{α}	ı	ı	ı	ı	49.0	0.71 ^B		ı	I	1	483	0.56α
$_{\rm H} {\rm SeIV}$	0.5 ppm SeIV	496ª	·	ı	ı	ı	72.5α	0.72^{Ca}		ı	ı	7	493	0.55 ^A
$_{\rm L}{ m SeY}$	0.2 ppm SeY	490	ı	ı	ı	ı	47.2	0.68^{D}		ı	ı	-	462	0.58^{B}
ыSeY	0.5 ppm SeY	461	·	ı	ı	ı	28.4^{B}	0.27	ı	ı	ı	1	566 ^a	0.53
CLA	CLAmix	466	40.2^{Aa} r=0.746 ⁶	53.9 ^{Aaa}	$5.11^{AB\alpha}$	99.2 ^{Aa}	21.0ª	0.46^{Aab}	3.72 r=2.818 ⁷	1.32	ı	5.04 0	639 ^{abAB}	0.52
$_{\rm L}{\rm SeIV}_{\rm CLA}$		530α	38.7 r=1.052 ⁶	36.8 ^α	2.01 ^α	77.5	18.1	0.46^{B}	2.85 r=1.952 ⁷	1.46	,	4.31 4	485 ^{bx}	0.49 ^a
${}^{\rm H}{\rm SeIV}_{\rm CLA}$	0.5 ppm SeIV CLAmix	577 ^a	10.9 ^{AX} r=0.551 ⁶	19.8 ^{AX}	0.28 ^{Ax}	31.0 ^{Ax}	16.4 ^x	0.41 ^{cax}	3.55 r=2.139 ⁷	1.66	0.064 ^a	5.29ª 480 ^A	480^	0.50 ^A
${}^{\rm L}{\rm SeY}_{\rm CLA}$	0.2 ppm SeY CLAmix	462	17.0^{α} r=0.773 ⁶	22.0 ^{ax}	0.30^{Bx}	39.4ª ^x	15.4 ^y	0.41^{Db}	3.47 r=2.210 ⁷	1.57	0.112	5.20 5	514 ^{Bx}	0.53 ^B
${}_{\rm H}^{\rm SeY}_{\rm CLA}$	0.5 ppm SeY CLAmix	475	51.2 r=0.994 ⁶	51.5	4.59	107.3	18.9	0.46 ^x	4.48 r=2.448 ⁷	1.83	0.108^{a}	6.42° 582	582	0.52
¹ the com <i>c</i> 8t10CLA was 0.985 tendencies pancreas	0 2 4 4 8	tary CLA LA. The c olumns sh of CLAmi the stand	isomer mi concentratio (aring the si x x _L Se and ard Labofee	ixture (C n ratio (r ame lette l CLAmii ed H diet	LAmix): = $c9t1IG$ = $c9t1IG$ = $x x_{H}Se$ ($x x_{H}Se$ (2.1% tt JLA/ $t10c$ nificantly Se as Se ed 0.2 pp	CLA, 7. <i>12</i> CLA) different IV or Se	1% <i>c11t1</i> : of <i>c9t1</i> /C nt: ^{a,b} P<0.(Y), signife; s selenite;	lietary CLA isomer mixture (CLAmix): 2.1% <i>t</i> rCLA, 7.1% <i>c11t1</i> 3CLA, 40.8% <i>c9t11</i> CLA, 41.3% <i>t10c1</i> 2CLA, 6.7% cCLA. The concentration ratio ($r = c9t11$ CLA/ <i>t10c12</i> CLA) of <i>c9t11</i> CLA to <i>t10c12</i> CLA in the dietary CLA isomer mixture columns sharing the same letter are significantly different: ^{a,b} P<0.05 and ^{A,B} P<0.01; ^{a,b} P<0.1 differences were taken as s of CLAmix x _L Se and CLAmix x _H Se (Se as SeIV or SeY), significant at ^x P<0.05 and ^{x,B} P<0.01; ^{a,b} P<0.01, respectively; ³ average ^{x,4} the standard Labofeed H diet contained 0.2 ppm Se as selenite: ⁵ below a quantification limit (i.e. 3 x the detection	% <i>c9t11</i> 2CLA ir $(0.01; \alpha^{\beta})$ 0.05 and uantifica	CLA, 4] the diet P<0.1 di xP<0.01 tion lim	3% t10 ary CLA fferences , respect it (i.e. 3	<i>c12</i> CLA isomer 1 isomer t_3 were t_4 ively; ³ x the de	., 6.7% mixture aken as average
-						•			•			,		

CZAUDERNA M. ET AL.

limit); ⁶ the concentration ratio of c9t11CLA/t10c12CLA in the spleen; ⁷ the concentration ratio of c9t11CLA/t10c12CLA in blood plasma

rats compared with the control rats and animals fed the diets enriched in SeIV or SeY. On the other hand, inclusion of CLAmix to the diet increased (P<0.01) the concentration of *c11t13*CLA only in the spleen. Feeding CLAmix with Se as LSeIV, HSeIV, or LSeY resulted in decreasing in the concentration of CLA isomers in the spleen. Considering above, we suggest that dietary SeIV, especially HSeIV, has a *pro*-oxidant effect on the CLA isomers in the spleen. The pro-oxidative properties of sodium selenite are known from *in vitro* and *in vivo* experiments (Spallholz, 1997; Terada et al., 1999; Boldižárová et al., 2005). Consequently, the combined addition of CLAmix and HSeY to the diet showed a high but not significant increase of the concentration of *c9t11*CLA in the spleen (+27%) and blood plasma (+21%). This diet particularly efficiently increased the total concentration of all assayed CLA isomers (+27%) in plasma. Moreover, the diet with the combined addition of CLAmix and Se as SeIV or SeY stimulated the accumulation of *t10c12*CLA and *c11t13*CLA in plasma compared with the diet enriched in only CLAmix.

Our results indicate that the ratio of the concentrations of c9t11CLA to t10c12CLA in the spleen of rats fed the diet enriched with the CLAmix was lower compared with the ratio of these isomers in the CLA isomer mixture added to the diets (i.e. 0.746 vs 0.988; see Table 1). Our present results are in agreement with our previous study (Niedźwiedzka et al., 2006), in which *t10c12*CLA and t10t12CLA were also less efficiently metabolized than c9t11CLA in the spleen of rats fed a diet with 1 or 2% CLA isomer mixture. Thus, our current and previous studies clearly document that c9t11CLA is more efficiently metabolized than *t10c12*CLA or *t10t12*CLA in the spleen. Our findings are not in agreement with those of Alasnier et al. (2002) and our previous studies (Niedźwiedzka et al., 2006; Korniluk et al., 2007; Czauderna et al., 2007a, 2009, 2010a,b) showing that the *t10c12* and *t10t11*CLA isomers were also more efficiently metabolized in other organs and tissues (e.g., the liver, pancreas, brain, kidneys, heart, adipose tissues, blood plasma and muscles) than the *c9t11* isomer. Our results documented that the spleen is a unique internal organ possessing a more efficient c9t11CLA metabolism than other internal organs, adipose tissue, blood plasma, and muscles. On the other hand, in the current study, it was found that the metabolic efficiency of isomer t10c12 in plasma was higher than that of c9t11CLA, which is in agreement with the results of Alasnier et al. (2002) and our studies on the liver, heart, muscle, kidney, pancreas and brain of rats (Niedźwiedzka et al., 2006; Korniluk et al., 2007; Czauderna et al., 2010a,b).

Interestingly, our current study documented that the c9t11CLA/t10c12CLA ratio in the spleen and plasma is affected by the addition of SeIV or SeY to the diet containing CLAmix. As can be seen from the results summarized in Table 1, the addition of LSeIV to the diet containing CLAmix increased the metabolic efficiency of t10c12CLA compared with the diet enriched in only CLAmix. On the other

hand, the addition of the higher amount of SeY the diet with CLAmix stimulated the accumulation of c9t11CLA in the spleen and plasma. Supplementing _HSeIV or _LSeY diets with CLAmix significantly reduced the concentration of c9t11CLA and t10c12CLA in the spleen, although isomer c9t11 is metabolized more efficiently than t10c12CLA. In plasma, these additives in the diet with CLAmix slightly reduced the efficiency of isomer t10c12 metabolism, while somewhat increasing the rate of c9t11CLA metabolism, although the ratio of c9t11CLA to t10c12CLA was lower than in rats given the diet with CLAmix.

The effect the experimental diets on the concentration of saturated, monoand polyunsaturated fatty acids in the spleen and blood plasma of rats. The diet enriched in CLAmix, regardless of the presence of SeIV or SeY, significantly decreased the concentration of c9C18:1, c11C18:1 as well as the total concentration of all assayed monounsaturated fatty acids (MUFA) in the spleen compared with the control group or rats fed the diet containing LSeIV, HSeIV, or SeY in particular (Table 2). This effect could be related to reduction of $\Delta 9$ -desaturation capacity in the spleen of rats fed the diet containing CLAmix, regardless of the presence of SeIV or SeY. In contrast, dietary SeIV, irrespective of its concentration in the diet, increased the $\Delta 9$ -desaturation index in the spleen and plasma, while dietary SeY, especially, HSeY decreased the value of this index. The present results support our previous studies on rats fed a diet containing 1.2 ppm Se as selenized yeast (SeY) with or without CLA isomer mixture (Korniluk et al., 2007; Niedźwiedzka et al., 2007), which also documented that the diet with 1.2 ppm as SeY decreased the $\Delta 9$ -desaturation index in the spleen of plasma.

Unexpectedly, the diet containing CLAmix stimulated the accumulation of t11C18:1 in the spleen and plasma compared with the control group and rats fed the diet with SeIV or SeY (Table 2). Moreover, the addition of LSeIV or HSeY to the diet with CLAmix resulted in more efficient accumulation of t11C18:1 in the spleen and plasma than the diet containing only CLAmix. Considering the above, we suggest that the presence of t11C18:1 in the spleen and plasma documents coprophagia of rats, as well as that some CLA isomers added to the rat diet are precursors of accumulated t11C18:1.

The splenic concentration of myristic acid (C14:1), as well as the total concentration of all assayed saturated fatty acids (SFA) having a detrimental effect on animal and human health, decreased with CLAmix and _HSeY treatments. Similarly, the addition of SeIV or SeY to the diet enriched in CLAmix decreased the concentration of these fatty acids in the spleen. Unexpectedly, supplementation of SeIV to the diet increased the concentration of C14:0 and SFA in the spleen and plasma. In addition, _HSeY treatment and supplementation of CLAmix and Se (as SeIV or SeY) increased the concentration of these fatty acids in plasma.

cts of 1.5% CLA isomer mixture (CLAmix) and selenite (SeIV) or selenized yeast (SeY) on the concentration of selected	by acids (MUFA) and saturated fatty acids (SFA) and $\Delta 9$ -desaturase index ($\Delta 9_{index}$) in the spleen and blood plasma of rats after	ı experimental diets ¹
ts of 1.5%	monounsaturated fatty acids (MUFA) an	6 weeks feeding with experimental diets

				Spleen	_					B	Blood plasma	na		
Group C14:0 t//C18:	C14:0	t11C18:	1 c9C18:1	clicit MUFA	MUFA	0 V	SFA	C14:0	tllC18:	C14:0 <i>t1</i> /C18:1 <i>c</i> 9C18:1 <i>c1</i> /C18:1 MUFA	<i>cll</i> C18:1	MUFA	0 4	SEA
	µg/gµ	g/gu	mg/g	µg∕g	mg/g	$\Delta \mathcal{F}_{index}$	mg/g	μg/g	g/gr	g/gn	µg∕g	µg/g	$\Delta \mathcal{F}_{index}$	SrAµg/g
Control 169 ^a - ² 8	169 ^a	- 2	8.1^{ABa}	1313^{ABC}	10.9^{Aa}	0.395^{A}	13.9 ^{AB}	2.37^{a}	I	30.7^{aby}	3.80 ^a	37.5^{aob}	0.148^{α}	194^{Aa}
SelV	234	ı	9.3°	1530^{D}	12.9 ^B	0.432^{B}	$14.1^{\rm C}$	3.36	I	37.2 ^α	4.41	45.1 ^{αβ}	0.163	209^{b}
SeIV	345^{ab}	ı	13.9^{Da}	2095^{AE}	19.2^{Ca}	0.445 ^c	20.2^{AD}	2.54	I	39.2 ^β	4.84^{a}	48.6^{γ}	$0.166^{\alpha a}$	218
SeY	197	ı	$7.7^{\rm E}$	1389^{F}	10.9 ^D	0.364^{D}	15.0^{E}	2.38	I	30.3	4.27	37.8	0.149^{b}	188^{B}
SeY	77	ı	2.7^{A}	321 ^B	9.4 ^b	0.242ª	8.6^{F}	2.93	'	39.67	4.81ª	48.4^{a}	0.143	259 ^A
CLA 85	85	2.17^{ac}	$2.6^{B\alpha}$	476^{CGHa}	$3.6^{\Lambda c\alpha}$	0.195^{Ab}	11.3^{BGaba}	3.31 ^{aub}	ı	42.6^{δ}	4.59	49.4 ⁸	0.131	297 ^{acub}
$_{\rm L}^{\rm SeIV}_{\rm CLA}$	128	2.65	2.9 ^c	$409^{D\alpha}$	3.8 ^B	0.249^{B}	9.6^{Ca}	2.91	0.366^{A}	32.8	3.84	41.3	0.135	234^{bex}
H SeIV CLA	$84^{\rm bx}$	0.16^{a}	2.1^{Dx}	291^{EGX}	2.6^{Cux}	0.183°	9.6^{DbX}	2.59^{α}	0.066^{A}	32.6	3.50^{a}	38.8 ⁷	0.128^{a}	237^{ux}
$^{\rm L}{ m SeY}_{ m CLA}$	81	0.52 ^a	$2.1^{\rm Ea}$	$305^{\rm FH}$	2.6^{De}	0.195^{D}	9.0^{EGX}	2.79 ^B	0.075^{B}	31.7°	3.63	37.9 ⁸	0.123^{b}	$238^{\mathrm{B}\beta}$
$_{\rm H}{ m SeY}_{ m CLA}$	110	4.18	2.8 ^x	443 ^x	3.6^{b}	0.232^{abX}	$10.1^{F\alpha}$	3.22	0.174^{B}	38.0	4.60	47.1	0.131	274×
¹ means in	columr	ns sharir	ng the sar	ne letter ar	e signific	santly diffe	means in columns sharing the same letter are significantly different: ^{ab} P<0.05 and ^{AB} P<0.01; ^{ab} P<0.1 differences were taken as tendencies	.05 and ⁷	^{A,B} P<0.01;	^{α,β} P<0.1 d	ifferences	were tal	ken as tei	idencies;
interactions of CLAmix x	is of CL.	Amix x		CLAmix x	_H Se (Se :	as SeIV or	^L Se and CLAmix x _H Se (Se as SeIV or SeY), significant at ^x P<0.05 and ^X P<0.01, respectively; ² below a quantification	ficant at ^x	P<0.05 ar	hd xP<0.01,	respectiv	ely; ² belc	w a quan	tification

limit, LQ (i.e. $LQ = 3 \times the detection limit)$

CZAUDERNA M. ET AL.

Changes in saturated fatty acid concentrations in the spleen and plasma are consistent with changes in the atherogenic and thrombogenic properties of the spleen and blood plasma. Indeed, the addition of CLAmix or _HSeY to the diet decreased the concentrations of atherogenic (A-SFA) and thrombogenic (T-SFA) saturated fatty acid in the spleen, and increased them in plasma (Table 3). Supplementing CLAmix and Se (as SeIV or SeY) to diets decreased the levels of these fatty acids in the spleen, while increasing them in plasma. Additionally, the diet containing the higher level of SeIV stimulated the accumulation of A-SFA and T-SFA in the spleen and plasma.

An inverse relationship between concentrations of A-SFA and T-SFA in the spleen and blood plasma and values of atherogenic (A_{index}) and thrombogenic (T_{index}) indexes in these tissues was found (Table 3). In fact, the addition of _HSeY or CLAmix to the diet or combined supplementation with CLAmix and Se (as SeIV or SeY) of diets increased A_{index} and T_{index} values in the spleen and plasma. Additionally, the larger amount of SeIV in the diet increased the A_{index} and T_{index} values in plasma. Increased A_{index} and T_{index} values in the spleen have been associated with a decrease in the concentration of PUFA, particularly PUFAn-3 (Table 4). In contrast, more efficient accumulation of A-SFA and T-SFA in plasma is responsible for the increase in the A_{index} and T_{index} values. Indeed, changes in the concentrations of PUFA, PUFAn-3, and PUFAn-6/PUFAn-3 ratio in plasma (Table 4) are usually small and not responsible for increasing A_{index} and T_{index} values (Ulbricht and Southgate, 1991).

Rats fed the diet enriched in CLAmix with or without Se (as SeIV or SeY) showed decreased concentrations of linoleic (LA), α -linolenic (α LNA), arachidonic (AA), docosapentaenoic (DPA) and docosahexanoic (DHA) acids as well as the total concentration of the assayed PUFA in the spleen compared with the control rats (Tables 3 and 4). Additionally, these diets reduced spleen concentrations of PUFAn-3 and long-chain PUFAn-3 (LPUFAn-3) and LPUFAn-6, while increasing the PUFAn-6/PUFAn-3 ratio with the exception of the diet containing only CLAmix. In contrast, the diet enriched in SeY, and especially SeIV, considerably increased spleen concentrations of the polyunsaturated fatty acids mentioned above and decreased the PUFAn-6/PUFAn-3 ratio. Surprisingly, the addition of the higher amount of SeY to the diet decreased the spleen concentrations of these fatty acids and increased the PUFAn-6/PUFAn-3 ratio. It appears that the highly bioavailable chemical form of dietary Se at the higher dose (i.e. 0.5 ppm Se as SeY) exhibited some pro-oxidative. It has been suggested that larger doses of dietary selenized yeast may lead to higher continuous release of selenomethionine from body deposits into the free amino acid pool with a subsequently higher production of H₂Se, which has pro-oxidative properties (Boldižárová et al., 2005).

				Spleen						Blc	Blood plasma			
Group	Group A-SFA T-SFA	T-SFA		F	LA	αLNA	A A ma/a	A-SFA	T-SFA	•	F	LA	αLNA	AA
	mg/g	mg/g mg/g	r index	I index	mg/g	µg∕g	g/gm vv	g/gμ	µg∕g	ra index	I index	µg∕gµ	µg∕g	µg∕g
Control	Control 9.5 ^{AB} 13.7 ^{AB}	13.7^{AB}	0.326^{A}	$0.412^{A\alpha\beta}$ 12.3^{Aab}	12.3^{Aab}	477^{ABa}	5.66^{ABaba}	99 ^{0ab}	$192^{\alpha AB}$	0.376^{a}	0.557	139ª	15.6	50.2
SelV	9.9 ^c 13.9 ^c	13.9 ^c	0.307^{B}	0.357^{Ba}	12.7 ^B 1	1006°	6.47^{a}	107	206^{a}	0.396	0.584	138	13.8	50.7
SeIV	¹ SeIV 14.8 ^{AD} 19.9 ^{AD}	19.9 ^{AD}	0.305°	0.340°	19.5 ^{ca} 1	1420 ^{AD}	9.73 ^b	113ª	217^{α}	0.416^{a}	0.629^{A}	138	14.8	45.0
SeY	$10.0^{\rm E}$ $14.8^{\rm E}$	14.8^{E}	0.333^{D}	0.383^{D}	11.6 ^D	578^{E}	7.02 ^{AC}	91°	186°	0.342^{A}	0.489^{B}	129	13.7	53.8
SeY	3.9ª	8.6^{F}	0.344	0.590^{β}	$8.2^{\rm bc}$	251ª	1.52ª	132^{a}	257 ^A	0.438	0.614^{a}	146	19.6	59.4
CLA	$6.6^{Bba\beta}$	CLA $(6.6^{Bba\beta} 11.2^{BGHa\alpha})$	0.929 ^{AEF}	1.075^{Aeab}	3.6^{AEba}	146^{Ba}	1.67 BDEFc	151^{bdef}	$295^{Bbc\beta}$	0.455 ^a	0.673	$171^{\rm abc}$	18.3 ^a	59.3
$_{\rm L}{\rm SelV}_{\rm CLA}$	$SelV_{CLA}$ 6.0 ^{Ca}	9.5^{Ca}	0.769^{B}	1.295^{BaX}	$3.2^{\mathrm{B}\alpha}$	$194^{\rm c}$	0.90^{cX}	111^{dx}	230^{abx}	0.473	0.660	$92^{\rm b}$	12.1	47.5
H SeIV _{CLA}	_H SeIV _{CLA} 5.8 ^{DβX}	9.5^{DGX}	0.903^{CEX}	0.903 ^{CEX} 1.434 ^{CbX}	2.7^{Cbx}	58^{Dax}	1.03^{Dx}	113^{ex}	232^{ex}	0.481^{a}	0.718^{A}	111°	12.9	49.5
$_{\rm L}{ m SeY}_{ m CLA}$ 5.5 $^{ m Eb}$	5.5^{Eb}	8.9 ^{EHX}	0.917^{DFX}	0.917 ^{DFX} 1.535 ^{DEX}	2.5^{DE}	$81^{\rm E}$	0.83^{CEX}	$115^{\rm cf}$	$235^{\rm CB}$	0.432^{A}	0.630^{B}	130	11.2^{α}	62.3
$_{ m H}{ m SeY}_{ m CLA}$ 6.2 ^a		$10.0^{F\alpha}$	0.757 ^x 1.212 ^x	1.212 ^x	3.3°	187	1.12^{FX}	142	267×	0.482	0.683 ^a	147	15.0	57.0
¹ the athe	rogenic ii	dex = (C)	12:0+4*C	14:0+C16	IUM)/(0:	-A+PUF	the atherogenic index = (C12:0+4*C14:0+C16:0)/(MUFA+PUFAn-6+PUFAn-3) (Ulbricht and Southgate, 1991); ² the thrombogenic index	vn-3) (Ulb	richt and	Southgate,	1991); 2	the thror	nbogenic	index =
(C14:0+C	316:0+C1	8:0) / (0.5	*MUFA+	0.5*PUFA	n-6+ 3*F	UFAn-3	(C14:0+C16:0+C18:0) / (0.5*MUFA+0.5*PUFAn-6+ 3*PUFAn-3+PUFAn-3/PUFAn-6) (Ulbricht and Southgate, 1991); ³ the concentration sum	PUFAn-6)	(Ulbricht	and South	igate, 1991	1); ³ the c	concentrat	ion sum
of: C12:6	of: C12:0, C14:0 and C1	ind C16:0	; ⁴ the cor	ncentration	l sum of	C14:0, (16:0; ⁴ the concentration sum of C14:0, C16:0 and C18:0; ⁵ means in columns sharing the same letter are significantly	318:0; ⁵ me	ans in col	lumns sha	ring the sa	ume lette.	r are sign	ificantly
different:	^{a,b} P<0.05	and ^{A,B} P<	0.01; ^{α,β} P<	<0.1 differ	ences we	re taken	different: ^{a,b} P<0.05 and ^{A,B} P<0.01; ^{a,b} P<0.1 differences were taken as tendencies; interactions of CLAmix x_L Se	ss; interact	ions of CI	Amix x _L	Se and C	CLAmix :	and CLAmix x_{H} Se (Se as SeIV	as SeIV
or set),	significan	1 at "F <u.u< td=""><td>>4., DUB C</td><td>or set), signingant at "r<0.05 and "r<0.01, respectively</td><td>ecuvely</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></u.u<>	>4., DUB C	or set), signingant at "r<0.05 and "r<0.01, respectively	ecuvely									

				Spleen							Blood plasma	sma		
Group	DPA	DHA	PUFA	LPUFA	LPUFA _{n-3} LPUFA _{n-3} PUFA	PUFA	n-6/n-3	DPA	DHA	PUFA	1-3LPUFA LPUFA PUFA PUFA	LPUFA	PUFA	n-6/n-3
	µg∕g	μg/g	mg/g	mg/g	mg/g	mg/g	C-11/0-11	µg/g	µg/g	µg/g	µg/g	µg/g	µg∕g	С-11/О-11
Control	1 799 ^{ABa}	223^{ABa}	19.8^{Aa}	1.24^{ABa}	$5.89^{AB\alpha}$	$7.16^{AB\alpha\beta}$	1.75	2.92^{abA}	5.56 ^a	225	19.5	51.0	85.5	1.63^{a}
SelV	$724^{\rm C}$	275 ^c	21.9 ^B	1.49 ^c	6.74^{Ca}	8.67 ^{Ca}	1.50^{A}	3.62°	6.47	225	21.6^{a}	51.5	86.7	1.60^{A}
^H SeIV	1396^{Da}	426^{Da}	33.0^{Ca}	2.30^{Da}	10.05^{D}	12.97 ^{AD}	1.53 ^a	3.84	6.51	222	23.1 ^a	45.8 ^α	83.4	1.67
	1112^{E}	$354^{\rm C}$	21.1 ^D	$1.85^{\rm E}$	7.22^{E}	9.06^{E}	1.30^{b}	9.29 ^{au}	7.07	231	29.8	56.3	98.2	1.34^{ab}
	115 ^A	$30^{A\alpha}$	10.2^{b}	0.18^{A}	1.54^{A}	1.92 ^B	2.11	5.53 ^b	7.27	254	27.5	60.4^{a}	106.9	1.37
	329 ^{BFHGI}	329^{BFHGI} $100^{BEFb\beta}$		$6.1^{\rm AEFb} 0.51^{\rm BFGHb}$	1.74^{BFGIB}		$2.25^{FGHI\beta}$ 1.66^{BCca}	8.47 ^{Ade}	8.47 ^{Ade} 10.14 ^{abc}	$286^{\alpha\beta a}$	$30.4^{\rm b}$	61.3	108.6^{α}	1.60°
$_{\rm L}^{\rm SelV}_{\rm CLA}$	147^{CFX}	46^{CEX}	4.6^{Bb}	0.22^{CFx}	0.94^{CFX}	1.29^{CFx}	2.52^{ABx}	13.13°	7.19 ^{bx}	197α	31.1^{α}	56.1	91.9	1.11^{Ac}
H SeIV _{CLA}	$_{\rm H}{\rm SeIV}_{\rm CLA}$ 168 $^{\rm DHX}$	59 ^{рьх}	4.1^{CEX}	0.25^{DGX}	1.05^{DGx}	1.31^{DGX}	$2.09^{a\alpha}$	3.57^{dx}	6.91 ^{cx}	200^{a}	19.1 ^{abx}	50.8	82.1	1.38
$^{\rm L}{ m SeY}_{ m CLA}$	123^{EGx}	46^{CFx}	$3.7^{\rm DF}$	$0.18^{\rm EH}$	$0.85^{\rm EI}$	1.08^{EH}	2.40^{Cbx}	3.55 ^{aex}	7.82×	232 ^b	20.8×	63.5	95.6 ^a	1.39^{bx}
${}_{\rm H}{ m SeY}_{ m CLA}$	191 ^{IX}	$68^{\alpha\beta X}$	$5.1^{\rm b}$	0.30^{bX}	$1.16^{\beta X}$	1.57^{IX}	2.20°	4.81 [×]	8.43	253	23.7	58.8	97.1	1.55
¹ the conc	centration :	sum of <i>c1</i> .	1c14c17(the concentration sum of <i>cllcl4c17</i> C20:3, <i>c8c1lc14c17</i> C20:4, <i>c5c8c1lc14c17</i> C20:5, <i>c7c10c13c16c19</i> C22:5 and <i>c4c7c10c13c16c19</i> C22:5;	1c14c17C	20:4, <i>c5c8c</i>	cllc14c17	C20:5, <i>c</i> 7	7c10c13c	16c19C	22:5 and c	4c7c10c13	<i>c16c19</i> C	22:5;
2 the conc	centration 5	sum of cl	<i>Ic14</i> C2(² the concentration sum of <i>cllc14</i> C20:2, <i>c8cllc14</i> C20:3, <i>c5c8cllc14</i> C20:4, <i>c13c16</i> C22:2 and <i>c7c10c13c16</i> C22:4; ³ in columns sharing the same	14C20:3, c	5c8cllcl4	C20:4, c1.	3c16C22:	2 and $c7$	c10c13c	16C22:4:	in column	sst	laring

Letter are significantly different: ^{a,b}P<0.05 and ^{A,B}P<0.01; ^{a,b}P<0.01 differences were taken as tendencies; interactions of CLAmix x₁Se and CLAmix x₁Se (Se as SelV or SeY), significant at *P<0.05 and ^XP<0.01, respectively

CZAUDERNA M. ET AL.

5. Dietary effects of 1.5% CLA isomer mixture (CLAmix) and selenite (SeIV) or selenized yeast (SeY) on ratio values of PUFA/SFA,	ΣFA , MUFA/SFA and indexes of ¹ elongase, ² $\Delta 4$ -, ³ $\Delta 5$ - and ⁴ $\Delta 6$ -desaturases the spleen and blood plasma of rats after 6 weeks feeding with	nental diets ⁵
Table 5. Dietary	PUFA/2FA, MUF	experimental d

- 1														
				Spleen						I	Blood plasma	sma		
Group	Group PUFA PUFA		MUFA	Elongase	74	75	76	PUFA PUFA	PUFA	MUFA	MUFA Elongase	A4	75	76
	SFA	ΣFA	SFA	index	L index	- vindex	- Vindex	SFA	ΣFA	SFA	index	index	index	Cindex
Control 1.42 ^A	1.42^{A}	0.44^{Λ}	0.79 ^{Aa}	0.882	0.22	0.973 ^{ABCDa}	0.973 ^{ABCDa} 0.043 ^{Aabcd}	1.16^{a}	0.49 ^α	0.193 ^a	0.763	$0.66^{ab\alpha}$	0.989 ^a	0.016^{a}
SelV	1.55 ^B	0.45^{B}	0.91^{B}	0.865	0.23	0.972^{AE}	0.022^{Ba}	1.08	0.47	0.216	0.786	0.64	0.987^{A}	0.032^{A}
	1.64 ^c	0.46°	0.95^{Ca}	0.855 ^a	0.23	0.976^{a}	0.009^{A}	1.02 ^a	0.45 ^{aa}	0.222 ^a	0.752	0.63°	0.982ª	0.029ª
SeY	1.40^{D}	0.45^{D}	0.73^{D}	0.853	0.24^{a}	0.972^{B}	0.020^{ba}	1.23^{A}	0.50^{A}	0.202^{A}	0.797	0.43^{Aa}	0.985	0.055 ^a
SeY	1.18	0.14	1.09	0.884	0.21^{a}	0.986°	0.033°	0.98	0.45	0.187	0.752	$0.57^{\rm b}$	0.991^{B}	0.021^{b}
CLA	$0.54^{Aab\alpha}$	0.29^{AE}	$0.32^{A\beta}$	0.895 ^a	0.23	0.978^{Dbce}	$0.127^{dbey\delta}$	0.96 ^α	0.45^{b}	0.167^{a}	0.764	0.55 ^{aβd}		0.990 ^{CDyc} 0.028 ^{BCDc}
$_{\rm L}{ m SeIV}_{ m CLA}$ 0.48 ^{Ba} 0	$0.48^{B\alpha}$	0.25^{B}	0.39^{B}	0.921	0.24	0.983^{Eb}	$0.077^{B\beta}$	0.84	0.41	0.177^{x}	0.798	0.35	$0.977^{\rm Acx} 0.096^{\rm AB}$	0.096^{AB}
H SeIV CLA	0.43^{Cax}	0.25°	0.27^{CBx}	0.933^{a}	0.26	0.989	0.056°	0.85^{a}		0.42^{ab} 0.164^{a}	0.794	0.66 ^{cbx}	0.66 ^{cbx} 0.979 ^D	0.057^{Ca}
$_{\rm L}{ m SeY}_{ m CLA}$	$^{\rm L}{ m SeY}_{ m CLA}$ 0.41 $^{ m Db}$	0.24^{DE}	0.29 ^D	0.943	0.28^{a}	0.28 ^a 0.991 ^{cX}	$0.067^{a\gamma}$	0.98^{A}	0.45^{A}	0.45^{A} 0.159^{Ax}	0.847	$0.69^{AdX} 0.985^{\gamma}$	0.985	0.104°
_H SeY _{CLA} 0	0.51^{X}	0.27^{X}	0.36	0.914^{a}		0.26^{α} 0.981^{eX}	0.117^{δ}	0.92	0.44	0.172	0.791	0.64 ^x	0.791 $0.64^{\rm X}$ $0.977^{\rm BcX}$ $0.085^{\rm Db}$	0.085^{Db}
¹ the elong	gase index	= c7cI0	c13c16c	19C22:5/(c)	7c10c13	c16c19 C2	the elongase index = $c7c10 c13c16c19C22:5/(c7c10c13c16c19 C22:5+c5c8c11c14c17C20:5)$	14c17C2	0:5)					
² ∆4-desat	urase inde	$\mathbf{x} = c4c7c$	c10c13c1	6c19C22:6	(c4c7c)	10c13c16c1	$\Delta 4$ -desaturase index = $c4c7c10c13c16c19C22:6/(c4c7c10c13c16c19C22:6+c7c10c13c16c19C22:5)$	0c13c16	c19C22:	5)				
³ ∆5-desat	urase inde	$\mathbf{x} = c 5 c \delta_{\mathbf{t}}$	cllcl4C	20:4/(c5c8c	IlcI4C.	20:4+c8c11	³ $\Delta 5$ -desaturase index = $c5c\&cllcl4C20:4/(c5c\&cllcl4C20:4+c\&cllcl4C20:3n-6)$	~						
⁴ ∆6-desat	urase inde	$\mathbf{x} = c 6 c 9_0$	<i>c12c15</i> C	$\Delta 6\text{-desaturase index} = c6c9cl2cl5Cl8:4/(c6c9cl2cl5Cl8:4+c9cl2cl5Cl8:3)$:12c15C	18:4+ <i>c9c1</i>	<i>2c15</i> C18:3)							
⁵ in colum	ns sharing	the same	e letter ar	e significan	tly diffe	rent: ^{a,b} P<0	in columns sharing the same letter are significantly different: ^{a,b} P<0.05 and ^{A,B} P<0.01; ^{a,b} P<0.1 differences were taken as tendencies; interactions).01; ^{α,β} P₄	<0.1 diff	erences v	vere taken	n as tend	lencies; in	teractions
of CLAm.	ix x _L Se ar	nd CLAm	uix x _H Se	(Se as SeIV	/ or SeY), significat	of CLAmix x _L Se and CLAmix x _H Se (Se as SeIV or SeY), significant at $^{xP<0.05}$ and $^{XP<0.01}$, respectively	0>d _x pue	.01, resp	ectively				

In contrast, the diet containing CLAmix or $_{\rm H}$ SeY increased the concentration of the above-mentioned individual polyunsaturated fatty acids as well as PUFA, LPUFAn-3, LPUFAn-6, and PUFAn-3 in plasma compared with the control group. Other experimental diets showed a small and inconsistent influence on the concentrations of these fatty acids in plasma. Supplementing $_{\rm L}$ SeY or $_{\rm H}$ SeY alone to diets or to the diet containing CLAmix decreased PUFAn-6/PUFAn-3 ratios in plasma.

The rat diet enriched in 1.5% CLAmix with or without Se (as SeIV or SeY) significantly increased $\Delta 6$ -desaturase index values in the spleen and plasma (Table 5). Additionally, rats in the SeIV or SeY treatments presented a higher value of this index in plasma than the control group. Values of the $\Delta 4$ -, $\Delta 5$ -desaturase indexes and the elongase index were slightly higher in the spleen of rats fed the diet enriched in CLAmix; the addition of SeIV or SeY to the diet with CLAmix increased the values of these indexes in the spleen in comparison with the diet containing only CLAmix. Similarly, values of the plasma elongase index were higher rats fed the diets enriched in both CLAmix and Se (as SeIV or SeY) than in the control group or rats in the SeIV, SeY, or CLAmix treatments.

Unexpectedly, the diet enriched in CLAmix resulted in a decrease in the ratios of PUFA/SFA, MUFA/SFA, PUFA/ Σ FA (Table 5) and UFA/ Σ FA (Table 1) in the spleen and plasma. The addition of SeIV or SeY to the diet containing CLAmix usually slightly decreased the values of these ratios in the spleen and plasma in comparison with rats fed the diet with CLAmix. Similarly, the _HSeY treatment decreased the values of these ratios in both examined tissues. Considering the above, it appears that dietary CLAmix and/or Se (as SeIV or SeY) resulted in a different composition pattern of SFA, MUFA and PUFA in the spleen and blood plasma.

CONCLUSIONS

This study describes changes in fatty acid profiles in the spleen and plasma as a result of the addition of 1.5% CLAmix and various amounts of sodium selenite (SeIV), selenized yeast (SeY) to the rat diet. The results document that the CLAmix treatment more significantly stimulated the metabolic, especially catabolic, processes of poly- (PUFA) and monounsaturated fatty acids (MUFA) in the spleen than saturated fatty acids (SFA). The efficiency of PUFA and MUFA metabolism in the spleen was increased by dietary supplementation of SeIV or SeY to the diet containing CLAmix. These final conclusions are well confirmed by changes in the values of the elongase and $\Delta 4$ -, $\Delta 5$ -, and $\Delta 6$ -desaturase indexes and the PUFA/SFA and MUFA/SFA ratios in the spleen. On the other hand, the diet containing CLAmix, irrespective of the presence of SeIV or SeY, stimulated the accumulation of MUFA, PUFA, and SFA in blood plasma.

The diet enriched CLAmix and the higher amount of SeY most efficiently stimulated accumulation of CLA isomers, especially health-promoting c9t11CLA in the spleen and plasma. We demonstrated that c9t11CLA in the rat spleen is more efficiently metabolized than t10c12CLA, while in other internal organs, muscles, and adipose tissues, t10c12CLA is metabolized faster than the c9t11 isomer.

Further research is needed to determine if dietary selenium compounds and individual CLA isomers also induce changes in fatty acid profiles and elongase and desaturase indexes in the spleen and blood plasma of rats.

ACKNOWLEDGMENTS

Excellent rat care and courteous assistance throughout the study were provided by technicians B. Domańska and G. Oktaba.

REFERENCES

- Alasnier C., Berdeaux O., Chardigny J.M., Sébédio J.L., 2002. Fatty acid composition and conjugated linoleic acid content of different tissues in rats fed individual conjugated linoleic acid isomers given as triacylglycerols. J. Nutr. Biochem. 13, 337-345
- Boldižárová K., Grešáková Ľ., Faix Š., Mellen M., Leng Ľ., 2005. Antioxidant status of lambs fed on diets supplemented with selenite or Se-yeast. J. Anim. Feed Sci. 14, 245-253

Brender E., Burke A., Glass R.M., 2005. The spleen. J. Amer. Med. Assoc. Organs 294, 2660-2661

- Czauderna M., Kowalczyk J., Korniluk K., Niedźwiedzka K.M., 2007a. Comparison of the influence of different chemical forms of selenium and the profiles of CLA isomers in the diet on the fatty acid and amino acid contents in the liver and femoral muscles of rats. J. Anim. Feed Sci. 16, 678–695
- Czauderna M., Kowalczyk J., Korniluk K., Wąsowska I., 2007b. Improved saponification then mild base and acid-catalyzed methylation is a useful method for quantifying fatty acids, with special emphasis on conjugated dienes. Acta Chromatogr. 18, 59-71
- Czauderna M., Kowalczyk J., Krajewska A.K., 2010b. The dietary level of selenized yeast affected the concentrations of conjugated linoleic acid isomers, other fatty acids, and amino acids in the liver and femoral muscles of rats. Czech. J. Anim. Sci. (in press)
- Czauderna M., Kowalczyk J., Krajewska K.A., Michalski J.P., 2010a. The dietary level of selenite and selenized yeast influences the concentrations of selected fatty acids in the abdominal fat and brain of rats. J. Anim. Feed Sci. 19, 113-129
- Czauderna M., Kowalczyk J., Krajewska K.A., Rozbicka A.J., Michalski J., 2009. Dietary selenite and conjugated linoleic acid isomers influence fatty acid concentrations in the liver and femoral muscles of rats. J. Anim. Feed Sci. 18, 564-581
- De La Tore A., Debiton E., Juaneda P., Durand D., Chardigny J.M, Barthomeuf C., Bauchart D., Gruffat D., 2006. Beef conjugated linoleic acid isomers reduce human cancer cell growth even when associated with other beef fatty acids. Brit. J. Nutr. 95, 346-352

- Harold E., 2010. Anatomy of splenectomy for ruptured spleen. Surgery 28 (5), 226-228
- Gilmore T.D., 2006. Introduction to NF-κB: players, pathways, perspectives. Oncogene 25, 6680-6684
- Jørgensen H., Hansen C.H., Mu H., Jakobsen K., 2010. Protein and energy metabolism of young male Wistar rats fed conjugated linoleic acid as structured triacylglycerol. Arch. Anim. Nutr. 64, 322-336
- Korniluk K., Czauderna M., Kowalczyk J., 2007. The influence of dietary conjugated linoleic acid isomers and high-selenized yeast on the fatty acid profile of spleen, pancreas and kidneys of rats. J. Anim. Feed Sci. 16, 121-139
- Naumann E., Carpentier Y.A., Saebo A., Lassel T.S., Chardigny J.M., Sebedio J.L., Ronald P., Mensink R.P., 2006. *Cis-9,trans-11* and *trans-10,cis-12* conjugated linoleic acid (CLA) do not affect the plasma lipoprotein profile in moderately overweight subjects with LDL phenotype B. Atherosclerosis 188, 167-174
- Navarro-Alarcon M., Cabrera-Vique C., 2008. Selenium in food and the human body: A review. Sci. Total Envir. 400, 115-141
- Niedźwiedzka K.M., Korniluk K., Kowalczyk J., Czauderna M., 2007. Influence of dietary CLA isomers and selenium compounds on the fatty acid and amino acid profiles in blood plasma of rats. J. Anim. Feed Sci. 16, 257-273
- Niedźwiedzka K.M., Wąsowska I., Czauderna M., Kowalczyk J., Pastuszewska B., 2006. Influence of dietary conjugated linoleic acid isomers and Se on fatty acids profile in blood plasma and some tissues of rats. J. Anim. Feed Sci. 15, 471-489
- Park Y., Pariza M.W., 2007. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res. Int. 40, 311-323
- Perkins N.D., 2007. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49-62
- Rayman P.M., 2004. Review article. The use of high-selenium yeast to raise selenium status: how does it measure up? Brit. J. Nutr. 92, 557-573
- Slavik P., Illek J., Brix M., Hlavicova J., Rajmon R., Jilek F., 2008. Influence of organic versus inorganic dietary selenium supplementation on the concentration of selenium in colostrum, milk and blood of beef cows. Acta Vet. Scand. 50, 43-48
- Spallholz J.E.,1997. Free radical generation by selenium compounds and their prooxidant activity. Biomed. Environ. Sci. 10, 260-270
- Statistica by StatSoft, 2002. Web: www.statsoft.pl
- Terada A., Yoshida M., Seko Y., Kobayashi T., Yoshida K., Nakada M., Nakada K., Echizen H., Ogata H., Rikihisa T., 1999. Active oxygen species generation and cellular damage by additives of parental preparations: selenium and sulphydryl compounds. J. Nutr. 15, 651-655
- Ulbricht T.L.V., Southgate D.A.T., 1991. Coronary heart disease: seven dietary factors. Lancet 338, 985-992
- Yu L.L., Wang R.L., Zhang Y.Z., Kleemann D.O., Zhu X.P., Jia Z.H., 2008. Effects of selenium supplementation on polyunsaturated fatty acid concentrations and anti-oxidant status in plasma and liver of lambs fed linseed oil or sunflower oil diets. Anim. Feed Sci. Tech. 140, 39-51
- Yu Y., P.H. Correll P.H., Van den Heuvel J.P., 2002. Conjugated linoleic acid decreases production of pro-inflammatory products in macrophages: evidence for a PPARg-dependent mechanism. Biochim. Biophys. Acta 1581, 89-99
- Yusuf S.W., Rehman Q., Casscells W., 2002. Cardiomyopathy in association with selenium deficiency: a case report. J. Parent. Enter. Nutr. 26, 63-66